The Xometry app works best with JavaScript enabled!
Xometry Logo
CapabilitiesIndustriesResourcesSuppliesBecome a SupplierFind Suppliers
Sign In
Cookie Policy
Xometry stores cookies on your computer to provide more personalized services to you, both on this website and through other media. By using this website, you consent to the cookies we use and our Privacy Policy.

3D Printing in Nylon

Nylon is a high-performance engineering thermoplastic found in a wide range of industries. Its popular usage stems from its excellent abrasion resistance, high fatigue resistance, and high load-bearing capacity. Due to these properties, 3D printing in nylon is a great way to make lightweight industrial and medical implements that are just as capable as heavier metal ones.

Xometry ImageXometry Image

About 3D Printing in Nylon

3D printed nylon comes in many different forms, namely as a filament for FDM (fused deposition modeling) or as a powder for SLS (selective laser sintering) and MJF (HP Multi Jet Fusion) printing. 3D printing in nylon creates parts with excellent properties but it’s important to understand that the type of 3D printing process will determine the final part capabilities. For example, FDM prints will have an anisotropic structure caused by the extruded layer lines. Even SLS-printed parts will have a level of anisotropy between layers. MJF parts tend to have isotropic properties, meaning the material will behave the same regardless of the direction of the load. However, with correct setups and part orientation, anisotropic effects can largely be negated and parts can benefit from the excellent properties of nylon.

3D Printed Nylon at a Glance
ApplicationGears, screw elements, siding-contact components resistance.
AdvantagesLow friction coefficient, excellent toughness, high impact resistance
DisdvantagesProne to moisture absorption; can warp during printing
Lead TimeDepending on the type of 3D printing technology, lead times average between 1 day and 4 days on an expedited timeline. Economical lead times are available.
Price$
Minimum Feature Size0.030” (0.762 mm) for SLS and MJF, 0.060” for FDM (1.52 mm)
TolerancesBetween +/- 0.012” to 0.004” depending on the process
Layer Height0.0045" for SLS and HP MJF, 0.010" - 0.013" for FDM
Max Part SizeUp to 24” x 36” x 36” (610 mm x 914 mm x 914 mm)

MJF Nylon 11 EX

Nylon 11 EX for MJF-printed parts has good mechanical properties with excellent chemical resistance and low moisture absorption rates. It is resilient and can deform to a much larger extent than other nylons, making it ideal for snap-fit components.

MJF Nylon 11 Properties
Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
525580185202

MJF Nylon 12

This MJF nylon offers good dimensional stability and maintains its mechanical properties over a long period of time. Parts printed from this material can be watertight, making them ideal for electronic housings that need to prevent moisture ingress.

MJF Nylon 12 Properties
Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
482080175187

MJF Nylon 12 Glass Filled

The grade of MJF nylon 12 has glass beads included as a filler material. This increases the material’s overall stiffness and hardness and reduces its tendency to warp during printing. Its stiff nature makes it ideal for fixtures and tooling.

MJF Nylon 12 Glass Filled Properties
Tensile Strength, Yield (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
301082174186

FDM Nylon 12

This resilient grade of FDM nylon is highly resistant to shocks and fatigue. It is ideal for tough applications that undergo multiple load/unload cycles or that experience a great deal of vibration.

FDM Nylon 12 Properties
Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
3230N/A75178

SLS Nylon 12 (PA 2200)

Much like its MJF counterpart, this SLS nylon offers good dimensional stability and maintains its properties over a long period of time. It does have a higher level of anisotropy than MJF and this must be taken into account when designing parts using this material. The upside is that it exhibits greater tensile strength than MJF nylon 12 version.

SLS Nylon 12 (PA 2200) Properties
Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
481875154176

SLS Nylon 12 Glass Filled

As with any glass-filled material this SLS nylon has improved stiffness and hardness. It has a higher tensile strength than MJF nylon glass-filled but will not deform much before breaking. It is also highly resistant to chemical reactions.

SLS Nylon 12 Glass Filled
Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
38.1280179185

SLS Nylon 12 AF (PA 605-A)

This nylon for SLS printing has the unique property of being aluminum-filled and thus creates parts with a surface finish similar to cast aluminum, also gaining much of the metal’s excellent thermal conductivity. This makes it ideal for tooling, fixtures, or automotive components that get exposed to elevated temperatures.

SLS Nylon 12 AF Properties
Tensile Strength, Yield (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Melting Point (℃)
N/A376D180181

SLS Nylon 12 CF (PA 603-CF)

This nylon for SLS printing uses carbon as its filler material. This has the benefit of stiffening the material and reducing overall part weight while also being highly resistant to warping at high temperatures. This makes it ideal for applications that demand low weight like sports equipment or racing components.

SLS Nylon 12 CF (PA 603-CF) Properties
Ultimate Tensile Strength (MPa)Elongation at Break (%)Hardness (Shore D)Heat Deflection Temperature (℃)Glass Transition Temperature (℃)
854N/A179N/A

SLS Nylon 12 HST (PA 620-MF)

SLS nylon 12 HST (PA 620-MF) contains mineral fibers that increase stiffness and maintain a high strength rating while also allowing for high-temperature operations. This makes it ideal for tooling or aerospace applications.

SLS Nylon 12 HST (PA 620-MF) Properties
Ultimate Tensile Strength (MPa)Elongation at Break (%)Hardness (Brinell)Heat Deflection Temperature (℃)Melting Point (℃)
511575184184

Finishes

Xometry offers a wide range of surface finishes for 3D printing in nylon, some of which are listed below. Follow this link to learn about our other finishing options.


  • Standard: This type of finish is possible for all 3D printing technologies listed above. Printing supports are removed from the part but no additional work is done to the finish. Note that SLS and MJF parts have much better off-the-machine finishes than FDM and do not require removal of support structures.
  • Nickel plating: This surface treatment is not for cosmetic applications as it creates a rough nickel finish. It does, however, add additional durability, stiffness, and wear resistance. This finish is only available for SLS nylon parts.

SLS selective laser sinter nylon dyed blue part

Cost-saving Design Tips

DFM: Each type of 3D printing technology requires special considerations during the design phase. FDM parts, for example, may need additional support as well as consideration for which layer orientation will generate maximum strength. SLS parts need drain holes to remove unused powder from internal cavities. Design-for-manufacturability (DFM) principles need to be applied from the start.

Choose the right plastic and process: Each of the above plastics and machine combinations is better suited to certain applications. If the goal is to produce a temporary tooling jig then FDM may be the best option. However, if a visual prototype is required, then SLS or MJF may better suit your needs.

    FDM 3d print large part mail tray box
    Instant Quoting Engine

    Need Parts 3D Printed in DLS Resin?

    Quick Links

    • Contact Us

    • Help Center

    • Our Story

    • Xometry Go Green

    • Careers

    • Legal

    • Press

    • Refer a Colleague

    Locations

    • 7529 Standish Place

      Suite 200

      Derwood, MD 20855

    • 7940 Cessna Avenue
      Gaithersburg, MD 20879
      240-252-1138


    • 7315 Wisconsin Ave
      Suite 300 East
      Bethesda, MD 20814


    • 446 East High Street
      Lexington, KY 40507


    • 11777 San Vicente Blvd
      Suite 747
      Los Angeles, CA 90049


    • 117 Wright Industrial Cove
      Jackson, TN 38301


    • Ada-Lovelace-Str. 9
      85521 Ottobrunn, Germany
      +49 32 22 109 8186
      www.xometry.eu

    Xometry Go Green Initiative
    2.0M+
    LBS OF C02 OFFSET

    Xometry
    © 2021 Xometry, All Rights Reserved