The Xometry app works best with JavaScript enabled!
Xometry Logo
CapabilitiesIndustriesResourcesSuppliesBecome a SupplierFind Suppliers
Sign In
Cookie Policy
Xometry stores cookies on your computer to provide more personalized services to you, both on this website and through other media. By using this website, you consent to the cookies we use and our Privacy Policy.

Titanium for CNC Machining

Titanium is an advanced material with excellent corrosion resistance, biocompatibility, and strength-to-weight characteristics. This unique range of properties makes it an ideal choice for many of the engineering challenges faced by the medical, energy, chemical processing, and aerospace industries.

cnc titanium nuts and partscnc titanium nuts and parts

About Titanium for CNC Machining

Titanium (or Ti on the periodic table) is a lightweight metal with a wide range of useful properties from corrosion resistance to strength retention at extreme temperatures. You can purchase it both in pure and alloyed form. Note that even pure titanium has some (less than 1%) iron and oxygen content. More advanced alloys significantly improve the overall strength of titanium.

Titanium At a Glance
ApplicationTitanium is an advanced material widely used in the aerospace and medical industries. Its applications include medical implants, airframes, and parts used in highly corrosive industrial environments.
AdvantagesExcellent strength-to-weight ratio, corrosion-resistant, biocompatible
DisdvantagesCostly, Can be difficult to machine
Lead TimeLead time is generally a minimum of 3 days. However, this can increase depending on the titanium used or if the parts are manufactured internationally.
TolerancesMachining tolerances depend on the titanium used. However, a tolerance of 0.005” (0.13mm) is generally achievable.
Wall ThicknessA minimum wall thickness of 0.03” (0.8mm) is achievable. This can vary depending on the ratio of wall thickness to planar dimension. The minimum wall thickness is also affected by the specific grade of titanium.
Max Part SizeThe maximum size of the part depends on the available machines and the part complexity.

Titanium (Grade 2)

This grade is essentially a pure (99%) form of unalloyed titanium. It has excellent corrosion resistance characteristics and is easier to machine than other titanium alloys. Grade 2 is typically the best option when aqueous corrosion resistance is desired. Desalination components and medical implants are some of its applications.

Titanium (Grade 2) Properties
Tensile Strength, Yield (MPa)Fatigue Strength (MPa)Elongation at Break (%)Hardness (Brinell)Density (g/cm^3)

Titanium (Grade 5)

Titanium Grade 5 or Ti 6Al-4V is the most popular alloy of titanium. Its primary alloying elements are aluminum and vanadium. It also contains a small amount of nickel, palladium, and ruthenium that improve its corrosion resistance far above that of standard titanium. This alloy is significantly stronger than Grade 2 and retains its corrosion-resistant properties at a wide temperature range. Grade 5 is a common choice for engine components and aircraft airframes.

Titanium (Grade 5) Properties
Tensile Strength, Yield (MPa)Fatigue Strength (MPa)Elongation at Break (%)Hardness (Brinell)Density (g/cm^3)

Finishes and Post-Processing Options

We offer a wide range of surface finishes applicable to titanium. 

  • Case hardening: Titanium surfaces tend to gall when they come into sliding contact with each other. This problem can be eliminated using case hardening techniques. 
  • Anodizing: Titanium is anodized to either improve its wear resistance (type 2 anodizing) or to color the material (type 3 anodizing). Parts made for the medical industry sometimes make use of type 3 for color-coding purposes. 
  • As machined: If left in its as-machined state, titanium forms a protective oxide layer as soon as it’s exposed to air. This layer significantly improves its corrosion resistance. If scratched, the oxide layer will naturally reform, creating a self-healing effect.

    Xometry Image

    Cost-saving Design Tips

    Titanium is a costly material so remember cost considerations during the design phase. Below are some tips that can reduce the expenses of working with it.

    • Material selection: Select the correct material for your application so that its high price doesn’t become excessive. For example, if a lot of material is machined away, Grade 2 titanium may be the better option as it is more machinable. Grade 5, on the other hand, is applicable for high strength at extreme temperatures.
    • Design for manufacturing: Titanium is machined as easily as high-performance steels, but it does make a few unique demands on the machinist. As such, it is critical to follow the specific DFM principles that apply to the metal. Inefficiently designed parts can slow the machining process and thus drive up costs.
      Xometry Image
      Instant Quoting Engine

      Need CNC Machined Parts in Titanium?

      Quick Links

      • Contact Us

      • Help Center

      • Our Story

      • Xometry Go Green

      • Careers

      • Legal

      • Press

      • Refer a Colleague


      • 7529 Standish Place

        Suite 200

        Derwood, MD 20855

      • 7940 Cessna Avenue
        Gaithersburg, MD 20879

      • 7315 Wisconsin Ave
        Suite 300 East
        Bethesda, MD 20814

      • 446 East High Street
        Lexington, KY 40507

      • 11777 San Vicente Blvd
        Suite 747
        Los Angeles, CA 90049

      • 117 Wright Industrial Cove
        Jackson, TN 38301

      • Ada-Lovelace-Str. 9
        85521 Ottobrunn, Germany
        +49 32 22 109 8186

      Xometry Go Green Initiative

      © 2021 Xometry, All Rights Reserved