Medical engineering often pushes the envelope of modern manufacturing capabilities. As such, advanced technologies are required to turn life-changing designs into consumer-ready products. One of these technologies is Carbon Digital Light Synthesis (DLS), which enables the production of parts made of engineering elastomers that vastly outperform competing materials in the stereolithography (SLA) or digital light processing (DLP) sphere. This article will explain the benefits of switching to carbon 3D printing in the medical industry.
Carbon DLS makes use of the CLIP process, which stands for Continuous Liquid Interface Production. CLIP consists of 2 steps as described below:
View of Carbon DLS particles in process
To understand the benefits offered by carbon 3D printing in the medical industry, the difference between isotropic and anisotropic materials must be clarified.
Microscopic comparison of anisotropic (left) and isotropic (right) materials. Image Source: Carbon 3D
The carbon DLS process is unique in the sense that it can print elastomeric materials with rubber-like strength and resilience. Some of the key materials are listed below.
The materials listed above cover a wide range of toughness, tensile strength, and abrasion resistance properties, ensuring that almost any application can benefit from one or more of them. All of these properties are ideal for medical applications where parts undergo high levels of cyclic loading or provide unmatched accuracy when used as guides or for surgical preparation. These applications are listed in more detail below.
Carbon DLS is capable of printing parts to help surgeons accurately locate drills or other surgical implements. The rapid production and low cost allow these guides to be custom printed based on 3D scans or MRIs taken of the patient so that each part is tailor-made to their physique. This allows for improved surgical accuracy and therefore reduced risk.
Surgeons often prepare for complex surgeries by analyzing reams of data such as MRI or CT scans. Modern carbon 3D printing in the medical industry has more recently allowed surgeons to print full-scale representations of a patient's organs based on those scans. These models can then be used to help them prepare for complicated procedures.
One of the most widely known uses of carbon 3D printing in the medical industry is the creation of cheap prosthetics. Prosthetics were typically high-cost items since they need to be custom made for each patient. Prosthetics printed using FDM or other layer-based printing techniques were usually not as mechanically strong as those made using cast molds. However, with carbon printing technology, prosthetics can be made from engineering-grade materials that have the strength and toughness to dramatically increase their performance.
Hearing aids are another medical technology that can benefit greatly from the flexibility offered by Carbon DLS printing. Hearing aids need to be matched perfectly to the shape of the patient's ear canal in order to function efficiently. As such, a high-resolution surface is required. DLS is capable of producing highly accurate prints that can comfortably fit in the patient's ear. Plus, more comfortable hearing aids and hearing protection devices can be made from softer elastomers that are only printable using carbon DLS technology.
Medical engineering relies on a rigorous research and development cycle. Oftentimes multiple prototypes need to be manufactured to test the form, fit, and functionality of a design. With carbon DLS it is possible to use cheaper, less advanced materials to manufacture the prototype and then simply switch out materials on the same machine to create consumer-ready products with minimal effort.
As the medical industry continues to generate advanced innovations, equally advanced manufacturing equipment is required to bring these innovations to market quickly and cheaply without compromising on quality and functionality. To learn more about how to leverage carbon 3D printing in the medical industry, make use of Xometry’s instant quote tool to get accurate cost estimates on your medical device.