Understanding Sheet Metal Tolerances

Check out our list of quick tips and tolerance specifications for designing Sheet Metal countersinks, curls, and hems!

By Team Xometry · January 18, 2017

A Quick Guide to Countersinks, Curls, and Hems

Compared to other machining processes, designing Sheet Metal parts is relatively straight-forward. Sheet metal parts are made from a single metal sheet by punching, cutting, stamping, and/or bending and are known for their end-use durability. But there are still many important design-for-manufacturability issues to consider.

Check out our list of quick tips and tolerance specifications for designing Sheet Metal countersinks, curls, and hems! And for even more information, download our free Sheet Metal Design Guide!

Countersinks

Countersinks

The maximum depth of a countersink is .6 times the material thickness of the part. Countersinks must be at least 8 times the material thickness from each other, 4 times the material’s thickness from an edge, and 3 times the material’s thickness from a bend.


Sheet metal curl

Curls

Outside radius of curls must be at least 2 times the material’s thickness. Holes should be placed away from the curl at least a distance of the radius of the curl plus the material’s thickness. Bends should be at least 6 times the material’s thickness plus the radius of the curl.


Tear drop hem

Hems

Hems are folds to the edge of a part to create a rounded, safe edge. Hems may be open, flat, or tear-dropped, and tolerances depend on the hem’s radius, material thickness, and features near the hem (Note: flat hems risk fracturing the material at the bend and should be avoided if possible).

For open hems, minimum inside diameter is equal to the material thickness (larger diameters tend to lose circular shape), and the return length is at least 4 times the material’s thickness. Tear-dropped hems must maintain an inside diameter of at least one material’s thickness, an opening of at least ¼ the material’s thickness, and return length is also 4 times the material’s thickness.

Posted in Manufacturability Tips

Tags

About Xometry

Xometry is your one-stop shop for manufacturing on demand. Xometry works with 32% of Fortune 100 companies, offering 24/7 access to instant pricing, expected lead times and manufacturability feedback. Xometry’s nationwide network of 4,000+ partner manufacturing facilities guarantees consistently fast lead times across a broad array of capabilities, including CNC Machining, 3D Printing, Sheet Metal, Metal Stamping, Die Casting, Extrusion, Urethane Casting, and Injection Molding.

Featured Content

How to Choose the Right CNC Material for Your Part

Regardless of your industry, choosing the right material is one of the most important components in determining the overall functionality and cost of your part. Here are some quick tips for choosing the right material.

Read on  

What is Plasma Cutting?

Plasma cutting is a manufacturing technology classified as a sheet metal cutting process since it is often used to cut metal sheet or tube stock quickly. Learn about the benefits of using plasma cutting over other types of subtractive manufacturing processes.

Read on  

What is Laser Cutting?

Laser cutting is a manufacturing technology classified as a sheet metal cutting process since it is often used to cut industrial sheet metals. Learn about the benefits of using laser cutting over other types of subtractive manufacturing processes.

Read on