The Xometry app works best with JavaScript enabled!
  • Solutions
  • Industries
  • Resources
  • Enterprise
  • How Xometry Works
  • Become a Supplier
Resources3D Printing DesignAll About Stereolithography (SLA) 3D Printing

All About Stereolithography (SLA) 3D Printing

Picture of Dean McClements
Written by
Aaron Lichtig
Updated by
 6 min read
Published August 8, 2022
Updated October 8, 2024

Learn about this 3D printing technology and how it is used.

Stereolithography 3D printer in process. Image Credit: Shutterstock.com/asharkyu

SLA (Stereolithography) was among the first 3D printing technologies to be commercialized. It employs acrylic or other resins that must be cured using an ultraviolet (UV) laser. The technology has been reinterpreted in various ways. Its selection of materials has also grown significantly—you can now find rigid, flexible, heat resistant, chemical resistant, biocompatible, and other resin options. Xometry instantly quotes this process, and has done so since 2018. It's one of our most popular 3D printing processes.

The SLA process takes a 3D model of a component and renders it into solid plastic. The computer model is first digitally “sliced” into layers so the printer can methodically bond each slice to the one before it. SLA machines print prototype parts, test components, medical aids, tools, cosmetic test pieces, and much more.

This article provides a background understanding of SLA technology's advantages, materials, applications, and more.

An Introduction to SLA 3D Printing

SLA is a 3D printing process that uses a scanning UV laser to cure the surface layer of photosensitive resin. The resin is supplied in a bath, and, in the vast majority of SLA machines, the part is built upside-down. With each layer, the build plate will move upward, making it appear as if the part grows out of the liquid polymer. The machine must also print necessary support structures to support overhangs within the design. 

The UV-sensitive photopolymers used in the process are collectively referred to as ‘resins.’ They are photo-catalyzed acrylic monomers that become crosslinked when exposed to UV laser light. This principle allows the machine to create details as small as the laser beam’s width. 

SLA models are sometimes printed in a partially cured state. These models require post-processing in the form of extra UV exposure to complete the cross-linking process. This additional process step helps eliminate partially solidified resin that didn’t fully cure due to back-scatter and diffraction of the UV beam. Whether or not post-curing is performed, all parts must be washed after printing is complete to remove the surface resin. Washing is generally done in an isopropyl alcohol bath. The removal of the printed support scaffold takes place afterward.

For more information, see our article on everything about 3d printing.

SLA printed tags
SLA printed tags

The Light Source for SLA 3D Printing

The SLA 3D printing light source is a UV laser that acts as the stereolithography machine’s curing mechanism. This light source is precisely tuned to the catalyst used in the resin. However, different manufacturers use different wavelengths. The most common SLA laser is a 395 µm wavelength laser diode system. It produces 300-500 mW of power in the beam that is collimated to a diameter of around 300 µm. A variety of other laser light sources can be found in some equipment, with catalysts to suit their frequency range. Other types of UV light sources are used in whole-layer stereolithography. These lamps employ either a projector made of microscopic mirrors (in the case of digital light processing or DLP printers) or an LCD mask (usually referred to as masked stereolithography or MSLA).

SLA 3D Printing's Applications and Uses

SLA 3D Printing is used for applications such as:

  • Prototyping: Since they can include fine details, SLA-printed parts can be used as engineering test models.
  • Manufacturing: SLA creates functional parts for situations that don’t demand much stress resilience.
  • Engineering and product designing: SLA parts can be hand-finished and painted to create quality pre-tooling prototypes.
  • Jewelry: SLA machines can build cosmetic test articles for jewelers.
  • Dental works: SLA can create various dentistry products, including soft tissue, tooth, bone-implant materials, and casting cavities for polyurethane and silicone molding.
  • Healthcare: SLA processes can manufacture medical implants using specialized materials.
"SLA — as well as carbon DLS and Nexa3D LSPc 3D printing — uses photo curing liquid resins instead of powders or filament. A very thin, very even, fully dense layer of liquid resin is spread for each layer. As such, even with the same layer thickness, SLA prints will have a much smoother surface finish without extrusion marks or powdery surface layers."
Christian Tsu-Raun,
Team Lead, Manual Quoting

Materials Used in SLA 3D Printing

SLA 3D Printers can print using these materials:

  1. General-purpose acrylic resins: These materials are available in various toughnesses and transparencies.
  2. Flexible polyurethane elastomers: Used for flexible parts.
  3. Rigid polyurethanes: These have good cosmetic value, are more durable than general-purpose materials, and are well suited for product-trial or prototype pieces.
  4. Rigid resins: These are chemically and thermally stable and suited to engineering test parts.
  5. Dental and medical resins: These resins are medically safe and make for faster builds, quality finishes, and transparent items like mouthguards, splints, etc.
  6. ESD resins: These resins are suited to making electrostatically safe jigs for manufacturing.
Xometry Image
An SLA Xometry logo made with Accura Xtreme Gray material

How SLA 3D Printing Works

SLA 3D printing works by moving a UV laser in the X-Y plane. The UV light triggers catalysts in the liquid monomer resin. The print plate begins at the surface of the resin pool, and regions where the laser strikes both resin and the solid plate surface then get polymerized and affixed to the build plate. With that ‘layer’ complete, the build plate moves up, allowing the next layer to affix itself to the previous one. By repeating this process, the part will appear to grow out of the liquid pool. Prints usually begin with the part’s bottom, and the part is printed upside-down. 

Once removed, the part must be washed to remove any uncured resin. Any support scaffolding elements can then be cut away. 

SLA Printing's Print Parameters

An SLA machine’s print parameters are usually fixed by the manufacturers. It is only the part orientation and layer height that can be changed. Table 1 below shows a comparison of the two common SLA printer orientations:

SettingBottom-up SLA Printers (Desktop)Top-down SLA Printers (Industrial)
Setting

Typical layer height

Bottom-up SLA Printers (Desktop)

25 to 100 µm

Top-down SLA Printers (Industrial)

25 to 150 µm

Setting

Dimensional accuracy

Bottom-up SLA Printers (Desktop)

± 0.5% (lower limit: ± 0.010 to 0.250 mm)

Top-down SLA Printers (Industrial)

± 0.15% (lower limit: ± 0.010 to 0.030 mm)

Setting

Build size

Bottom-up SLA Printers (Desktop)

Up to 145 x 145 x 175 mm

Top-down SLA Printers (Industrial)

Up to 1500 x 750 x 500mm

Table 1. SLA Printer Characteristics

What Distinguishes SLA 3D Printing?

SLA is distinguished from other 3D printing systems and processes through its wide range of materials with very diverse properties and cosmetic qualities. SLA materials have improved and diversified significantly since first appearing in the market. Another distinguishing factor for SLA is its surface finish—one of the highest standards in the industry. The largest SLA machines were designed for the automotive industry and can build whole body panels, dashboards, etc.

SLA Post-Processing Options

SLA post-processing starts by removing uncured ‘wet’ resin. Bottom-up printers must be drained before post-processing while top-down equipment requires no such delay. In both cases, however, parts must be washed to remove any remaining liquid. Though manual spray-booth washing is still common, automatic solutions are marketed for this washing stage. Some resins require additional post-curing under UV radiation. Once complete, support scaffolds are then removed either manually or by automated equipment. At this point, models are usually considered complete. Any further processing such as sanding or painting is typically aimed at improving the part’s cosmetic appearance.

Benefits of SLA 3D Printing

SLA 3D printing offers a wide range of advantages. These are shown in Table 2:

Benefits
Benefits

Material properties

SLA has a wide range of material properties, depending on the supplier.

Benefits

Flexibility

Few 3D printing processes can offer pseudo-elastomer materials, but SLA is a good option for such. 

Benefits

Part surface finishes

SLA produces parts with great surface finishes. They are suited to high-spec finishes and also readily accept paint.

Benefits

Fine details of parts

SLA is good for fine details as long as the right equipment, resin, and service provider is chosen. Features down to 0.1 mm are easy to achieve.

Benefits

Uniformity of resolution

SLA has high resolution along the Z-axis but less so in X-Y. Care in process selection and build orientation are important.

Benefits

Production of complex parts

SLA can accurately reproduce complex parts.

Benefits

Curved surfaces

Z-steps on curved surfaces are barely detectable.

Benefits

Print process

The print process can be quick, assuming the overall part is not too tall along the printer’s Z-axis.

Table 2. SLA 3D Printing Benefits

Drawbacks of SLA 3D Printing

Drawbacks to SLA machines are shown in Table 3:

DrawbacksDescription
Drawbacks

High cost of parts

Description

Print resin costs $200 per liter.

Drawbacks

Wear resistance

Description

Most SLA materials perform poorly in situations of abrasion or stiction, so they shouldn’t be used in moving assemblies. High-strength SLA materials are better but cost more.

Drawbacks

High cost of equipment

Description

Industrial SLA machines cost $200,000 while less capable desktop machines start at $3,750.

Drawbacks

Laser-based system

Description

Laser-based systems require very careful safety monitoring and training.

Drawbacks

Demanding machine maintenance

Description

The lasers and liquid resin make machine maintenance demanding or challenging to perform.

Drawbacks

Different resolution

Description

Because the resolution in the X-Y plane is different from that along the Z-axis, some fine details may not come out right.

Drawbacks

Selective material properties

Description

Parts made from simpler and more common resins tend to be brittle and may creep under a steady load.

Table 3. Drawbacks of SLA 3D Printing

Xometry provides a wide range of manufacturing capabilities including Stereolithography (SLA) 3D Printing and value-added services for all of your prototyping and production needs. Request an instant quote today.


Disclaimer

The content appearing on this webpage is for informational purposes only. Xometry makes no representation or warranty of any kind, be it expressed or implied, as to the accuracy, completeness, or validity of the information. Any performance parameters, geometric tolerances, specific design features, quality and types of materials, or processes should not be inferred to represent what will be delivered by third-party suppliers or manufacturers through Xometry’s network. Buyers seeking quotes for parts are responsible for defining the specific requirements for those parts. Please refer to our terms and conditions for more information.

Picture of Dean McClements
Dean McClements
Dean McClements is a B.Eng Honors graduate in Mechanical Engineering with over two decades of experience in the manufacturing industry. His professional journey includes significant roles at leading companies such as Caterpillar, Autodesk, Collins Aerospace, and Hyster-Yale, where he developed a deep understanding of engineering processes and innovations.

Read more articles by Dean McClements

Quick Links

  • Home

  • Contact Us

  • Help Center

  • About Us

  • Careers

  • Press

  • Investors

  • Xometry Go Green

Support

  • Privacy Policy | Terms of Use | Legal

  • ITAR | ISO 9001:2015 | AS9100D | ISO 13485:2016 | IATF 16949:2016


© 2024 Xometry, All Rights Reserved